Home/Others
Introduction
Introduction
Ever since the first commercial thermal imaging camera was
sold in 1965 for high voltage power line inspections, by what
would later become FLIR Systems, the use of thermal imaging
cameras for industrial applications has been an important market
segment for FLIR.
Since then thermal imaging technology has evolved. Thermal
imaging cameras have become compact systems that look just
like a digital video camera or digital photo camera. They are easy
to use and generate crisp real-time high-resolution images.
Thermal imaging technology has become one of the most
valuable diagnostic tools for industrial applications. By detecting
anomalies that are usually invisible to the naked eye, thermal
imaging allows corrective action to be taken before costly
system failures occur.
Related Products
welded construction with temperature resistant insulation
Shop and search results
Mechanical Installations
In many industries, mechanical systems serve as the backbone
of operations.
Thermal data collected with a thermal imaging camera can be
an invaluable source of complimentary information to vibration
studies in mechanical equipment monitoring.
Mechanical systems will heat up if there is a misalignment at
some point in the system.
Conveyor belts are a good example. If a roller is worn out, it will
clearly show in the thermal image so that it can be replaced.
Typically, when mechanical components become worn and less
efficient, the heat dissipated will increase. Consequently, the
temperature of faulty equipment or systems will increase rapidly
before failure.
By periodically comparing readings from a thermal imaging
camera with a machine’s temperature signature under normal
operating conditions, you can detect a multitude of different
failures.
Suspected roller Overheated bearing
This thermal image shows an electric engine under normal operation.
Motors can also be inspected with a thermal imaging camera.
Motor failures like brush contact-wear and armature shorts
typically produce excess heat prior to failure but remain
undetected with vibration analysis, since it often causes little
to no extra vibration. Thermal imaging gives a full overview and
allows you to compare the temperature of different motors.
Other mechanical systems monitored with thermal imaging
cameras include couplings, gearboxes, bearings, pumps,
compressors, belts, blowers and conveyor systems.
Examples of mechanical faults that can be detected with thermal
imaging are:
• Lubrication issues
• Misalignments
• Overheated motors
• Suspect rollers
• Overloaded pumps
• Overheated motor axles
• Hot bearings
These and other issues can be spotted at an early stage with
a thermal imaging camera. This will help to prevent costly
damages and to ensure the continuity of production.
Motor: Bearing Problem.
Motor: Internal Winding Problem.
References: Flir Systems
Electrical systems
Thermal imaging cameras are commonly used for inspections of
electrical systems and components in all sizes and shapes.
The multitude of possible applications for thermal imaging cameras
within the range of electrical systems can be divided into two
categories: high voltage and low voltage installations.
High voltage installations
Heat is an important factor in high voltage installations. When electrical
current passes through a resistive element, it generates heat. An
increased resistance results in an increase in heat.
Over time the resistance of electrical connections will increase, due
to loosening and corrosion for instance. The corresponding rise in
temperature can cause components to fail, resulting in unplanned
outages and even injuries. In addition, the energy spent on generating
heat causes unnecessary energy losses. If left unchecked, the heat
can even rise to the point where connections melt and break down; as
a result, fires may break out.
Examples of failures in high-voltage installations that can be detected
with thermal imaging:
• Oxidation of high voltage switches
• Overheated connections •
Incorrectly secured connections
• Insulator defects
These and other issues can be spotted at an early stage with a thermal
imaging camera. A thermal imaging camera will help you to accurately
locate the problem, determine the severity of the problem, and
establish the time frame in which the equipment should be repaired.
A wide view of a substation can quickly show areas where unwanted high
resistance connections exist. No other predictive maintenance technology is
as effective for electrical inspections as thermal imaging.
One of the many advantages of thermal imaging is the ability to perform
inspections while electrical systems are under load. Since thermal imaging
is a non-contact diagnostic method, a thermographer can quickly scan a
particular piece of equipment from a safe distance, leave the hazardous
area, return to his office and analyze the data without ever putting himself
in harm’s way.
Thermal imaging cameras allow you to inspect high voltage installations
from a safe distance, increasing worker safety.
Continuity is very important to utilities since many people rely on their
services. Therefore thermal imaging inspections have become the core of
utility predictive maintenance programs throughout the world.
Thermal imaging cameras are used for inspections of electrical systems and
components in all sizes and shapes and their use is by no means limited to
large high voltage applications alone.
Electrical cabinets and motor control centers are regularly scanned with
a thermal imaging camera. If left unchecked, heat can rise to a point that
connections melt and break down; as a result, fires may break out.
Besides loose connections, electrical systems suffer from load imbalances,
corrosion, and increases in impedance to current. Thermal inspections can
quickly locate hot spots, determine the severity of the problem, and help
establish the time frame in which the equipment should be repaired.
Examples of failures in low voltage equipment that can be detected with
thermal imaging:
• High resistance connections
• Corroded connections
• Internal fuse damage
• Internal circuit breaker faults
• Poor connections and internal damage
These and other issues can be spotted at an early stage with a thermal
imaging camera. This will help to prevent costly damages and to avoid
dangerous situations.
Whether you intend to use thermal imaging cameras for
low voltage inspections in production plants, office facilities,
hospitals, hotels or domestic residences, FLIR Systems has
exactly the right thermal imaging camera for the job.
References: Flir Systems
Energy Metering for Tenant Billing
List Price: $0.00
Our Multi-Circuit Monitor power monitoring system provides a convenient solution for monitoring multiple electrical services which share a common voltage source. It also reports diagnostic information such as power factor, volts, amps, and kVAR, over an RS-485 network using the industry standard Modbus® communication protocol. To protect valuable equipment, it has built-in alarm registers for over- and under-voltage, current, and kVA.
The monitoring capabilities and open systems compatibility of the H8238 make it the ideal power monitoring solution for OEM, tenant submetering applications, and load management of power distribution units commonly used in internet data centers. The meter is a UL508 open type device without enclosure.
APPLICATIONS
Tenant submetering
Real-time power monitoring
Activity-based costing
Managing loads
Monitor power parameters from up to 8 services with one device
Save labor and installation costs by monitoring up to eight 3Ø, (or six 3Ø plus neutral current) loads from a single service with common voltage connections
Eliminates the need to install multiple transducers – fewer components to install…saves time and space
Easy connection to up to 24 industry standard five-amp CTs
Modbus communications for efficient data collection
Improve monitoring system efficiencies by accessing 26 data points per circuit, plus alarms, with one RS-485 drop
Daisy chain up to 30 units on a single drop…easy wiring
Field-selectable address, baud rate, parity and wiring connections…simple configuration
Zone Controller
Automated Logic’s ZN220 provides unprecedented power and flexibility through fully programmable networked controllers. The ZN220 controllers connect to the Building Automation System (BAS) network using BACnet over ARCNET 156 kbps or MS/TP. The ZN220 supports a line of RS room sensors using its Rnet port.
Multi-Equipment Application Controllers
M Line controllers are ideal for multi-equipment applications in commercial environments. These robust standalone controllers utilize native BACnet communications over a high-speed ARCNET 156 kbps network to ensure superior performance.
Powerful Multi-Equipment Controller and Router
ME-LGR Powerful Multi-Equipment Controller and Router
Combining the features of our powerful multiequipment controller with a high-speed BACnet® router, the ME-LGR can do it all. Need 100 Mbps communications to a critical control site? Need to control multiple pieces of equipment at that site? Need to integrate third-party equipment on a proprietary network with your BACnet system? No problem. The ME-LGR can do it all, and it can also serve as a router to controllers on an ARCNET 156 kbps or MS/TP network.
A Tool for Sustainable Building Operations
Automated Logic’s EnergyReports™ application is an incredibly flexible, easy-to-use reporting tool that gives facility managers the power to produce a wide variety of reports showing a building’s energy consumption. Using dynamic and animated color graphs, EnergyReports allows users to compare energy consumption or demand over different periods with simple drop-down menus and calendar control options. A click of the mouse enables users to normalize consumption data, convert the data to cost or carbon dioxide emissions, and change engineering units on the fly. This gives facility managers a powerful tool to minimize energy consumption, maximize comfort, and achieve sustainable building operations
Software
WebCTRL Powerful and Intuitive Front End For Building Control
Automated Logic has long been known for its intuitive, powerful front-end building control software. In fact, ALC pioneered graphical programming in the industry. With our graphical user interface, users have such features as hierarchical scheduling, thermographic color floor plans, trending, alarm management, and reporting. And with WebCTRL®, our web-based building automation system, all of these features are available through a standard web browser – without any special software or plug-ins.
Characteristics
Introduction To Building Management Systems
A BMS is most common in a large building. Its core function is to manage the environment within the building and may control temperature, carbon dioxide levels and humidity within a building. As a core function in most BMS systems, it controls heating and cooling, manages the systems that distribute this air throughout the building (for example by operating fans or opening/closing dampers), and then locally controls the mixture of heating and cooling to achieve the desired room temperature. A secondary function sometimes is to monitor the level of human-generated CO2, mixing in outside air with waste air to increase the amount of oxygen while also minimising heat/cooling losses.
Systems linked to a BMS typically represent 40% of a building\\\’s energy usage; if lighting is included, this number approaches 70%. BMS systems are a critical component to managing energy demand. Improperly configured BMS systems are believed to account for 20% of building energy usage, or approximately 8% of total energy usage in the United States.[citation needed]
As well as controlling the building\\\’s internal environment, BMS systems are sometimes linked to access control (turnstiles and access doors controlling who is allowed access and egress to the building) or other security systems such as closed-circuit television (CCTV) and motion detectors. Fire alarm systems and elevators are also sometimes linked to a BMS, for example, if a fire is detected then the system could shut off dampers in the ventilation system to stop smoke spreading and send all the elevators to the ground floor and park them to prevent people from using them in the event of a fire.
Functions of Building Management Systems
The three basic functions of a central, computer-controlled BMS are:
• controlling
• monitoring
• optimizing
the building’s facilities, mechanical, and electrical equipment for comfort, safety, and efficiency.
A BMS normally comprises of:
• Power systems
• Illumination system
• Electric power control system
• Heating,Ventilation and Air-conditioning HVAC System
• Security and observation system
• Magnetic card and access system
• Fire alarm system
• Lifts, elevators etc.
• Plumbing system
• Burglar alarms, CCTV
• Trace Heating
• Other engineering systems
• Home Automation System
• Fire alarm and Safety system
Benefits of BMS
Building tenant/occupants
• Good control of internal comfort conditions
• Possibility of individual room control
• Increased staff productivity
• Effective monitoring and targeting of energy consumption
• Improved plant reliability and life
• Effective response to HVAC-related complaints
• Save time and money during the maintenance
Building owner
• Higher rental value
• Flexibility on change of building use
• Individual tenant billing for services facilities manager
• Central or remote control and monitoring of building
• Increased level of comfort and time saving
• Remote Monitoring of the plants (such as AHU\\\’s, Fire pumps, plumbing pumps, Electrical supply, STP, WTP etc.)
Maintenance Companies
• Ease of information availability problem
• Computerized maintenance scheduling
• Effective use of maintenance staff
• Early detection of problems
• More satisfied occupants
References
Wikipedia