Home/Others
LC16, LC32, LC48, LC64 -Powerful Microprocessor-Based Lighting Control Panels
LC16, LC32, LC48, LC64
Powerful Microprocessor-Based Lighting Control Panels
Automated Logic’s Lighting Control (LC) line brings the power and simplicity of WebCTRL® to your building’s lighting systems. The LC line utilizes advanced microprocessors to provide superior lighting control, while delivering the rapid response required by lighting applications.
Related Products
Key Features
Monitor:
up to 1000 feet (305 meters) of conductive fluid sensing cable and/or spot detectors per zone; 6000 feet (1830 meters) total, or
up to 700 feet (213 meters) of chemical sensing cable per zone; 4200 feet (1280 meters) total
The LDRA6 fully integrates with RLE’s family of leak detection cables. One controller can monitor an area for both water and chemical leaks with our distinct leak detection cables.
Create a unique combination of zone leak detection and dry contact alarm annunication
Adjustable leak thresholds fine-tune the system
Supervised inputs monitor cable for breaks and contamination
Form C relay output for each input enables communication with BMS/NMS/BAS via Modbus RTU (EIA-485)
One tri-color notification LED per input, and one audible alarm
Included Equipment: LDRA6 alarm panel
Additional Requirements: Isolated RLE power supply, leader cable, end-of-line (EOL) terminator, sensing cable (as needed for application)
Power: Requires an isolated power supply.
24VDC Isolated @ 600mA max.; requires RLE power supply PSWA-DC-24 (not included)
Inputs
Leak Detection Cable: Compatible with SeaHawk sensing cable and SD-Z and SD-Z1 spot detectors (not included)
Cable Input: Requires 15ft (4.6m) leader cable and EOL terminator for each zone (not included)
Maximum Length: 1000 feet (305m) of conductive fluid sensing cable and/or spot detectors per zone; 6000 feet (1830m) total, or 700 feet (213m) of chemical sensing cable per zone; 4200 feet (1280m) total
Detection Response Time Digital: When used with conductive fluid sensing cable or chemical sensing cable, 20-3600sec, software adjustable in 10 second increments; ±2sec Dry Contact NO/NC.
Outputs
Relay: 1 Form C Summary Alarm Relay, 6 Form C alarms, one per input/zone 1A @ 24VDC, 0.5A resistive @ 120VAC; Configurable for supervised or non-supervised, latched or non-latched
Communication Ports
EIA-232: 9600 baud; Parity none; 8 data bits, 1 stop bit
EIA-485: 1200, 2400, 9600 or 19,200 baud; Parity none, odd, even (programmable); 8 data bits, 1 stop bit
Protocols
Terminal Emulation (EIA-232): VT100 compatible
Modbus (EIA-485): Slave; RTU Mode; Supports function codes 03, 04, 06, and 16
Alarm Notification
Audible Alarm: 85DBA @ 2ft (0.6m); re-sound (disabled, 8,16 or 24 hours)
Visible Alarm: LED: Alarm: red; Cable Fault: yellow
Front Panel Interface
LED Indicators: Power: 1 green (on/off); 1 tri-color Status LED per zone (6 total) (Power On: green; Alarm: red; Cable Fault: yellow)
Push Buttons: Quiet/Test/Reset: 1
Operating Environment
Temperature: 32° to 122°F (0° to 50°C)
Humidity: 5% to 95% RH, non-condensing
Altitude: 15,000ft (4572m) max.
Storage Environment: -4° to 158°F (-20° to 70°C)
Dimensions: 10.5″W x 8.0″H x 2.0″D (267mmW x 203mmH x 51mmD)
Weight: 4 lbs. (1.82kg)
Mounting: Wall mount enclosure
Certifications: CE; ETL listed: conforms to UL 61010-1, EN 61010, CSA C22.2 No. 61010-1, IEC 61326:1997; RoHS compliant
welded construction with temperature resistant insulation
Shop and search results
Electrical systems
Thermal imaging cameras are commonly used for inspections of
electrical systems and components in all sizes and shapes.
The multitude of possible applications for thermal imaging cameras
within the range of electrical systems can be divided into two
categories: high voltage and low voltage installations.
High voltage installations
Heat is an important factor in high voltage installations. When electrical
current passes through a resistive element, it generates heat. An
increased resistance results in an increase in heat.
Over time the resistance of electrical connections will increase, due
to loosening and corrosion for instance. The corresponding rise in
temperature can cause components to fail, resulting in unplanned
outages and even injuries. In addition, the energy spent on generating
heat causes unnecessary energy losses. If left unchecked, the heat
can even rise to the point where connections melt and break down; as
a result, fires may break out.
Examples of failures in high-voltage installations that can be detected
with thermal imaging:
• Oxidation of high voltage switches
• Overheated connections •
Incorrectly secured connections
• Insulator defects
These and other issues can be spotted at an early stage with a thermal
imaging camera. A thermal imaging camera will help you to accurately
locate the problem, determine the severity of the problem, and
establish the time frame in which the equipment should be repaired.
A wide view of a substation can quickly show areas where unwanted high
resistance connections exist. No other predictive maintenance technology is
as effective for electrical inspections as thermal imaging.
One of the many advantages of thermal imaging is the ability to perform
inspections while electrical systems are under load. Since thermal imaging
is a non-contact diagnostic method, a thermographer can quickly scan a
particular piece of equipment from a safe distance, leave the hazardous
area, return to his office and analyze the data without ever putting himself
in harm’s way.
Thermal imaging cameras allow you to inspect high voltage installations
from a safe distance, increasing worker safety.
Continuity is very important to utilities since many people rely on their
services. Therefore thermal imaging inspections have become the core of
utility predictive maintenance programs throughout the world.
Thermal imaging cameras are used for inspections of electrical systems and
components in all sizes and shapes and their use is by no means limited to
large high voltage applications alone.
Electrical cabinets and motor control centers are regularly scanned with
a thermal imaging camera. If left unchecked, heat can rise to a point that
connections melt and break down; as a result, fires may break out.
Besides loose connections, electrical systems suffer from load imbalances,
corrosion, and increases in impedance to current. Thermal inspections can
quickly locate hot spots, determine the severity of the problem, and help
establish the time frame in which the equipment should be repaired.
Examples of failures in low voltage equipment that can be detected with
thermal imaging:
• High resistance connections
• Corroded connections
• Internal fuse damage
• Internal circuit breaker faults
• Poor connections and internal damage
These and other issues can be spotted at an early stage with a thermal
imaging camera. This will help to prevent costly damages and to avoid
dangerous situations.
Whether you intend to use thermal imaging cameras for
low voltage inspections in production plants, office facilities,
hospitals, hotels or domestic residences, FLIR Systems has
exactly the right thermal imaging camera for the job.
References: Flir Systems
The BTU07 is a full featured and low cost BTU meter with Modbus over RS485 capability developed specifically for sub metering applications. The DFSR737A is unique among BTU meters by having the BTU calculator separate from the flow sensor, which allows the flow meter to be installed where it is needed, but with the BTU calculator and display installed anywhere it is convenient for tenant reading. The BTU07 comes as a set together with the flow and temperature sensors.
Energy Metering for Tenant Billing
List Price: $0.00
Our Multi-Circuit Monitor power monitoring system provides a convenient solution for monitoring multiple electrical services which share a common voltage source. It also reports diagnostic information such as power factor, volts, amps, and kVAR, over an RS-485 network using the industry standard Modbus® communication protocol. To protect valuable equipment, it has built-in alarm registers for over- and under-voltage, current, and kVA.
The monitoring capabilities and open systems compatibility of the H8238 make it the ideal power monitoring solution for OEM, tenant submetering applications, and load management of power distribution units commonly used in internet data centers. The meter is a UL508 open type device without enclosure.
APPLICATIONS
Tenant submetering
Real-time power monitoring
Activity-based costing
Managing loads
Monitor power parameters from up to 8 services with one device
Save labor and installation costs by monitoring up to eight 3Ø, (or six 3Ø plus neutral current) loads from a single service with common voltage connections
Eliminates the need to install multiple transducers – fewer components to install…saves time and space
Easy connection to up to 24 industry standard five-amp CTs
Modbus communications for efficient data collection
Improve monitoring system efficiencies by accessing 26 data points per circuit, plus alarms, with one RS-485 drop
Daisy chain up to 30 units on a single drop…easy wiring
Field-selectable address, baud rate, parity and wiring connections…simple configuration
Rugged Flexibility for Single Equipment Applications
Automated Logic’s powerful SE line provides a rugged solution for single equipment applications. Designed to operate in a wide range of environmental conditions, SE controllers can be used in rooftop units, mechanical rooms, equipment closets, or almost any other weather tight location. Fully programmable using the EIKON® graphic programming language, SE controllers use native BACnet communications over either a high-speed ARCNET 156 kbps network or a medium speed MS/TP network to provide maximum flexibility and interoperability.
Powerful Gateway
Automated Logic’s Equipment Portal (EQ-PRTL) sets a new standard for integrating other manufacturers’ equipment into WebCTRL®. EQ-PRTL is a powerful gateway to a single piece of equipment /device using proprietary or open protocols such as Modbus and LonWorks. Support for BACnet® over ARCNET 156 kbps and MS/TP communications are standard.
A Tool for Sustainable Building Operations
Automated Logic’s EnergyReports™ application is an incredibly flexible, easy-to-use reporting tool that gives facility managers the power to produce a wide variety of reports showing a building’s energy consumption. Using dynamic and animated color graphs, EnergyReports allows users to compare energy consumption or demand over different periods with simple drop-down menus and calendar control options. A click of the mouse enables users to normalize consumption data, convert the data to cost or carbon dioxide emissions, and change engineering units on the fly. This gives facility managers a powerful tool to minimize energy consumption, maximize comfort, and achieve sustainable building operations
WebCTRL Powerful and Intuitive Front End For Building Control
Software
Automated Logic has long been known for its intuitive, powerful front-end building control software. In fact, ALC pioneered graphical programming in the industry. With our graphical user interface, users have such features as hierarchical scheduling, thermographic color floor plans, trending, alarm management, and reporting. And withWebCTRL®, our web-based building automation system, all of these features are available through a standard web browser – without any special software or plug-ins.
Time-Lapse Graphics™ is a revolutionary new feature within WebCTRL that allows operators to roll back time, up to a 24-hour slice, and play back hours of real-time data in just minutes. This innovative feature provides a quick, visual indication of any problem areas and gives facility managers a strong diagnostic tool to quickly identify and correct issues that impact energy efficiency and comfort.
Our Environmental Index™ provides a simple and effective solution. Starting with temperature as a key component of comfort, the Environmental Index (EI), expressed as a percentage, reflects how close the zone temperature is to the effective heating and cooling setpoints. Accessed through a browser using WebCTRL, the EI is shown on an easily read analog gauge, using the red segments to indicate poor environments, and graduating to green as conditions improve and the EI begins to approach 100%.
ALC’s EnergyReports™ is a flexible, easy-to-use reporting tool that enables facility managers to produce a wide variety of reports showing a building’s energy consumption. Using color graphs, EnergyReports allows users to compare energy consumption or demand over different periods with simple drop-down menus and calendar control options. This gives facility managers a powerful tool to minimize energy consumption, maximize comfort, and achieve sustainable building operations.
EIKON® – LogicBuilder, the most advanced graphical programming tool in the industry, replaced line-by-line programming with universally understood symbols to construct both standard and custom control algorithms. All of this combines to make the most intuitive, feature-rich, easy-to-use product on the market.