Home/Others
Petrochemical Applications
Refractory and Petrochemical Installations A wide variety of industries rely on furnaces and boilers for manufacturing processes, but the refractory linings for furnaces, boilers, kilns, incinerators, crackers and reactors are prone to degeneration and loss of performance. With a thermal imaging camera damaged refractory material and the corresponding heat loss can be easily located, as the heat transmission will show up clearly on a thermal image. Thermal imaging cameras are widely used in the petrochemical sector. They provide rapid, accurate diagnosis for furnace maintenance, refractory loss management and condenser fin diagnosis. Heat exchangers can be checked to detect blocked pipes. Furnace and boiler equipment is also prone to failures from a variety of other mechanisms. These include coking that plugs the inside of tubes and impedes product flow, slag build-up on the outside of tubes, under and overheating, flame impingement on tubes due to burner misalignment, and product leaks that ignite and cause serious damage to the equipment. To ensure refractory quality of boiler and furnace installations it is not enough to just perform inspections from the outside. The refractory on the inside of the boiler or furnace has to be inspected as well. With conventional methods it is necessary to shut down the installation to be able to inspect the inside. This is extremely costly due to a loss of production during downtime. These losses are not necessary, however, for FLIR Systems also has special thermal imaging cameras that can be used to inspect the inside of the installation during operation. This is possible due to the flame filter FLIR has included in the design of these thermal imaging cameras. Flames emit infrared radiation at different intensities at different wavelengths and at certain wavelengths in the infrared spectrum flames emit hardly any thermal radiation at all. A flame filter uses that fact to enable the thermal imaging camera to ‘see’ through the flames. References: Flir Systems
Related Products
Mechanical Installations
In many industries, mechanical systems serve as the backbone
of operations.
Thermal data collected with a thermal imaging camera can be
an invaluable source of complimentary information to vibration
studies in mechanical equipment monitoring.
Mechanical systems will heat up if there is a misalignment at
some point in the system.
Conveyor belts are a good example. If a roller is worn out, it will
clearly show in the thermal image so that it can be replaced.
Typically, when mechanical components become worn and less
efficient, the heat dissipated will increase. Consequently, the
temperature of faulty equipment or systems will increase rapidly
before failure.
By periodically comparing readings from a thermal imaging
camera with a machine’s temperature signature under normal
operating conditions, you can detect a multitude of different
failures.
Suspected roller Overheated bearing
This thermal image shows an electric engine under normal operation.
Motors can also be inspected with a thermal imaging camera.
Motor failures like brush contact-wear and armature shorts
typically produce excess heat prior to failure but remain
undetected with vibration analysis, since it often causes little
to no extra vibration. Thermal imaging gives a full overview and
allows you to compare the temperature of different motors.
Other mechanical systems monitored with thermal imaging
cameras include couplings, gearboxes, bearings, pumps,
compressors, belts, blowers and conveyor systems.
Examples of mechanical faults that can be detected with thermal
imaging are:
• Lubrication issues
• Misalignments
• Overheated motors
• Suspect rollers
• Overloaded pumps
• Overheated motor axles
• Hot bearings
These and other issues can be spotted at an early stage with
a thermal imaging camera. This will help to prevent costly
damages and to ensure the continuity of production.
Motor: Bearing Problem.
Motor: Internal Winding Problem.
References: Flir Systems
Energy Metering for Tenant Billing
List Price: $0.00
Our Multi-Circuit Monitor power monitoring system provides a convenient solution for monitoring multiple electrical services which share a common voltage source. It also reports diagnostic information such as power factor, volts, amps, and kVAR, over an RS-485 network using the industry standard Modbus® communication protocol. To protect valuable equipment, it has built-in alarm registers for over- and under-voltage, current, and kVA.
The monitoring capabilities and open systems compatibility of the H8238 make it the ideal power monitoring solution for OEM, tenant submetering applications, and load management of power distribution units commonly used in internet data centers. The meter is a UL508 open type device without enclosure.
APPLICATIONS
Tenant submetering
Real-time power monitoring
Activity-based costing
Managing loads
Monitor power parameters from up to 8 services with one device
Save labor and installation costs by monitoring up to eight 3Ø, (or six 3Ø plus neutral current) loads from a single service with common voltage connections
Eliminates the need to install multiple transducers – fewer components to install…saves time and space
Easy connection to up to 24 industry standard five-amp CTs
Modbus communications for efficient data collection
Improve monitoring system efficiencies by accessing 26 data points per circuit, plus alarms, with one RS-485 drop
Daisy chain up to 30 units on a single drop…easy wiring
Field-selectable address, baud rate, parity and wiring connections…simple configuration
Digi-Touch
Digital Device Network for Lighting Control
Automated Logic’s Digi-Touch® Network dramatically reduces installation and wiring costs of field input devices, while increasing functionality of lighting switches. The Digi-Touch Network allows addressable Digi-Touch wall switches and Digi-Touch Input Modules to communicate with the LC series of Lighting Control Panels.
Powerful Microprocessor-Based Lighting Control Panel
Automated Logic’s Lighting Control LC08 panel brings the power and simplicity of WebCTRL® to your building’s lighting systems. The LC08 utilizes an advanced microprocessor to provide superior lighting control, while delivering the rapid response required by lighting applications
Multi-Equipment Application Controllers
M Line controllers are ideal for multi-equipment applications in commercial environments. These robust standalone controllers utilize native BACnet communications over a high-speed ARCNET 156 kbps network to ensure superior performance.
Powerful Multi-Equipment Controllers
ME 812U Line – Powerful Multi-Equipment Controllers
The ME812U controllers have the speed, power, memory, and I/O flexibility to handle the most demanding control applications in the industry. Capable of controlling multiple pieces of equipment simultaneously, this robust BACnet controller can support complex control strategies with plenty of memory for trends, and is capable of third party integration using other communication protocols.
Powerful Gateway
Automated Logic’s Equipment Portal (EQ-PRTL) sets a new standard for integrating other manufacturers’ equipment into WebCTRL®. EQ-PRTL is a powerful gateway to a single piece of equipment /device using proprietary or open protocols such as Modbus and LonWorks. Support for BACnet® over ARCNET 156 kbps and MS/TP communications are standard.
High Speed Ethernet Router
The LGR is an extremely powerful, high-speed device router that can connect hundreds of control modules to a BACnet/IP backbone. Support for BACnet/IP, BACnet over Ethernet, ARCNET 156kbps, MS/TP, and BACnet PTP communications are standard. Optional protocol translator packages and a wide range of communication ports allow the LGR to also serve as a gateway to a wide range of open and proprietary networks. Fully programmable, the LGR can also execute complex control strategies for high level system integration.
Universally Understood Graphical Programming
EIKON-LogicBuilder for WebCTRL is the most advanced graphical programming tool in the industry. With the click of a button, you can build complex control algorithms, diagnose problems, and run real-time or simulated operational data to evaluate the performance of a control sequence. EIKON-LogicBuilder makes it easy to understand control sequences as it does not use cryptic “line by line” computer code.
Key Features and Benefits
Intuitive graphical programming tool eliminates the need for complex programming or cryptic computer code.
Powerful library of microblocks (control functions) provide the flexibility to develop simple and complex control sequences.
Universally understood graphic symbols make control algorithms easy to understand.
Flexible simulation mode enables the user to view the control routines before system installation which simplifies development and troubleshooting.
Live Graphic Function Blocks (GFBs) are a valuable troubleshooting tool that allow system performance to be viewed in real time.
Complete integration with WebCTRL workstation software for seamless facility programming.
Instant project documentation captures development process.
An extensive library of sample GFBs provides pre-engineered solutions to many typical HVAC control applications. They can be used as-is, or easily modified in EIKON to meet special requirements.
Complete compatibility and functionality with BACnet®, ASHRAE’s industry standard protocol, for programming BACnet objects.
Software
WebCTRL Powerful and Intuitive Front End For Building Control
Automated Logic has long been known for its intuitive, powerful front-end building control software. In fact, ALC pioneered graphical programming in the industry. With our graphical user interface, users have such features as hierarchical scheduling, thermographic color floor plans, trending, alarm management, and reporting. And with WebCTRL®, our web-based building automation system, all of these features are available through a standard web browser – without any special software or plug-ins.