Home/Others
Pulse to Modbus Converter
The AMR (auto meter reading) is an I/O module that has been specifically designed for the special needs of auto meter reading applications. The AMR can be interfaced directly with the output of various types of pulse output meters (electricity, water, gas, BTU) and the data collected from the various meters sent to a central host via its RS485 interface. Some special features which distinguish it from regular I/O modules are:
– noise filtering from the pulse input to prevent miscounts
– EEPROM memory to retain count data in case of power interruption
– accommodates up to 16 channels of pulse input
– dry contact channel input that eliminates the need for additional power supply
– synchronize retain count with actual meter display
– rechargeable battery backup option to maintain at least 8 hours of continuous operation during a power outage
and many more!
Related Products
welded construction with temperature resistant insulation
Shop and search results
Mechanical Installations
In many industries, mechanical systems serve as the backbone
of operations.
Thermal data collected with a thermal imaging camera can be
an invaluable source of complimentary information to vibration
studies in mechanical equipment monitoring.
Mechanical systems will heat up if there is a misalignment at
some point in the system.
Conveyor belts are a good example. If a roller is worn out, it will
clearly show in the thermal image so that it can be replaced.
Typically, when mechanical components become worn and less
efficient, the heat dissipated will increase. Consequently, the
temperature of faulty equipment or systems will increase rapidly
before failure.
By periodically comparing readings from a thermal imaging
camera with a machine’s temperature signature under normal
operating conditions, you can detect a multitude of different
failures.
Suspected roller Overheated bearing
This thermal image shows an electric engine under normal operation.
Motors can also be inspected with a thermal imaging camera.
Motor failures like brush contact-wear and armature shorts
typically produce excess heat prior to failure but remain
undetected with vibration analysis, since it often causes little
to no extra vibration. Thermal imaging gives a full overview and
allows you to compare the temperature of different motors.
Other mechanical systems monitored with thermal imaging
cameras include couplings, gearboxes, bearings, pumps,
compressors, belts, blowers and conveyor systems.
Examples of mechanical faults that can be detected with thermal
imaging are:
• Lubrication issues
• Misalignments
• Overheated motors
• Suspect rollers
• Overloaded pumps
• Overheated motor axles
• Hot bearings
These and other issues can be spotted at an early stage with
a thermal imaging camera. This will help to prevent costly
damages and to ensure the continuity of production.
Motor: Bearing Problem.
Motor: Internal Winding Problem.
References: Flir Systems
Electrical systems
Thermal imaging cameras are commonly used for inspections of
electrical systems and components in all sizes and shapes.
The multitude of possible applications for thermal imaging cameras
within the range of electrical systems can be divided into two
categories: high voltage and low voltage installations.
High voltage installations
Heat is an important factor in high voltage installations. When electrical
current passes through a resistive element, it generates heat. An
increased resistance results in an increase in heat.
Over time the resistance of electrical connections will increase, due
to loosening and corrosion for instance. The corresponding rise in
temperature can cause components to fail, resulting in unplanned
outages and even injuries. In addition, the energy spent on generating
heat causes unnecessary energy losses. If left unchecked, the heat
can even rise to the point where connections melt and break down; as
a result, fires may break out.
Examples of failures in high-voltage installations that can be detected
with thermal imaging:
• Oxidation of high voltage switches
• Overheated connections •
Incorrectly secured connections
• Insulator defects
These and other issues can be spotted at an early stage with a thermal
imaging camera. A thermal imaging camera will help you to accurately
locate the problem, determine the severity of the problem, and
establish the time frame in which the equipment should be repaired.
A wide view of a substation can quickly show areas where unwanted high
resistance connections exist. No other predictive maintenance technology is
as effective for electrical inspections as thermal imaging.
One of the many advantages of thermal imaging is the ability to perform
inspections while electrical systems are under load. Since thermal imaging
is a non-contact diagnostic method, a thermographer can quickly scan a
particular piece of equipment from a safe distance, leave the hazardous
area, return to his office and analyze the data without ever putting himself
in harm’s way.
Thermal imaging cameras allow you to inspect high voltage installations
from a safe distance, increasing worker safety.
Continuity is very important to utilities since many people rely on their
services. Therefore thermal imaging inspections have become the core of
utility predictive maintenance programs throughout the world.
Thermal imaging cameras are used for inspections of electrical systems and
components in all sizes and shapes and their use is by no means limited to
large high voltage applications alone.
Electrical cabinets and motor control centers are regularly scanned with
a thermal imaging camera. If left unchecked, heat can rise to a point that
connections melt and break down; as a result, fires may break out.
Besides loose connections, electrical systems suffer from load imbalances,
corrosion, and increases in impedance to current. Thermal inspections can
quickly locate hot spots, determine the severity of the problem, and help
establish the time frame in which the equipment should be repaired.
Examples of failures in low voltage equipment that can be detected with
thermal imaging:
• High resistance connections
• Corroded connections
• Internal fuse damage
• Internal circuit breaker faults
• Poor connections and internal damage
These and other issues can be spotted at an early stage with a thermal
imaging camera. This will help to prevent costly damages and to avoid
dangerous situations.
Whether you intend to use thermal imaging cameras for
low voltage inspections in production plants, office facilities,
hospitals, hotels or domestic residences, FLIR Systems has
exactly the right thermal imaging camera for the job.
References: Flir Systems
Zone Controller
Automated Logic’s ZN551 provides unprecedented power and flexibility through fully programmable networked controllers. The ZN551 controllers connect to the Building Automation System (BAS) network using BACnet over ARCNET 156 kbps or MS/TP. The ZN551 supports a line of RS room sensors using Rnet port
Zone Controller
Automated Logic’s ZN220 provides unprecedented power and flexibility through fully programmable networked controllers. The ZN220 controllers connect to the Building Automation System (BAS) network using BACnet over ARCNET 156 kbps or MS/TP. The ZN220 supports a line of RS room sensors using its Rnet port.
Powerful Multi-Equipment Controllers
ME 812U Line – Powerful Multi-Equipment Controllers
The ME812U controllers have the speed, power, memory, and I/O flexibility to handle the most demanding control applications in the industry. Capable of controlling multiple pieces of equipment simultaneously, this robust BACnet controller can support complex control strategies with plenty of memory for trends, and is capable of third party integration using other communication protocols.
Balancing Efficiency with Comfort
WebCTRL Environmental Index – Balancing Efficiency With Comfort
As energy prices continue to soar, facility managers are under increasing pressure to find ways to cut building operating costs. A simple solution would be to decrease energy consumption, but smart managers know that sacrificing comfort for energy savings could lead to even bigger financial problems. After all, studies have shown productivity decreases as comfort levels decline, leading to lost revenues in companies and difficult learning environments in school systems. What’s needed is a way to measure comfort, so managers would know exactly how far to cut energy usage without negatively impacting comfort.
Automated Logic’s Environmental Index provides the solution. Since the key component of comfort is temperature, ALC’s index starts with assigning point values based on the difference between zone temperature and heating and cooling set points. Other factors, such as humidity and CO2 levels, can also be computed into the numeric system to reflect one “comfort” score for all factors. This is a powerful tool for facility managers who need to identify buildings with performance problems or ensure buildings don’t become less efficient as changes are made.
Universally Understood Graphical Programming
EIKON-LogicBuilder for WebCTRL is the most advanced graphical programming tool in the industry. With the click of a button, you can build complex control algorithms, diagnose problems, and run real-time or simulated operational data to evaluate the performance of a control sequence. EIKON-LogicBuilder makes it easy to understand control sequences as it does not use cryptic “line by line” computer code.
Key Features and Benefits
Intuitive graphical programming tool eliminates the need for complex programming or cryptic computer code.
Powerful library of microblocks (control functions) provide the flexibility to develop simple and complex control sequences.
Universally understood graphic symbols make control algorithms easy to understand.
Flexible simulation mode enables the user to view the control routines before system installation which simplifies development and troubleshooting.
Live Graphic Function Blocks (GFBs) are a valuable troubleshooting tool that allow system performance to be viewed in real time.
Complete integration with WebCTRL workstation software for seamless facility programming.
Instant project documentation captures development process.
An extensive library of sample GFBs provides pre-engineered solutions to many typical HVAC control applications. They can be used as-is, or easily modified in EIKON to meet special requirements.
Complete compatibility and functionality with BACnet®, ASHRAE’s industry standard protocol, for programming BACnet objects.
Software
WebCTRL Powerful and Intuitive Front End For Building Control
Automated Logic has long been known for its intuitive, powerful front-end building control software. In fact, ALC pioneered graphical programming in the industry. With our graphical user interface, users have such features as hierarchical scheduling, thermographic color floor plans, trending, alarm management, and reporting. And with WebCTRL®, our web-based building automation system, all of these features are available through a standard web browser – without any special software or plug-ins.
WebCTRL Powerful and Intuitive Front End For Building Control
Software
Automated Logic has long been known for its intuitive, powerful front-end building control software. In fact, ALC pioneered graphical programming in the industry. With our graphical user interface, users have such features as hierarchical scheduling, thermographic color floor plans, trending, alarm management, and reporting. And withWebCTRL®, our web-based building automation system, all of these features are available through a standard web browser – without any special software or plug-ins.
Time-Lapse Graphics™ is a revolutionary new feature within WebCTRL that allows operators to roll back time, up to a 24-hour slice, and play back hours of real-time data in just minutes. This innovative feature provides a quick, visual indication of any problem areas and gives facility managers a strong diagnostic tool to quickly identify and correct issues that impact energy efficiency and comfort.
Our Environmental Index™ provides a simple and effective solution. Starting with temperature as a key component of comfort, the Environmental Index (EI), expressed as a percentage, reflects how close the zone temperature is to the effective heating and cooling setpoints. Accessed through a browser using WebCTRL, the EI is shown on an easily read analog gauge, using the red segments to indicate poor environments, and graduating to green as conditions improve and the EI begins to approach 100%.
ALC’s EnergyReports™ is a flexible, easy-to-use reporting tool that enables facility managers to produce a wide variety of reports showing a building’s energy consumption. Using color graphs, EnergyReports allows users to compare energy consumption or demand over different periods with simple drop-down menus and calendar control options. This gives facility managers a powerful tool to minimize energy consumption, maximize comfort, and achieve sustainable building operations.
EIKON® – LogicBuilder, the most advanced graphical programming tool in the industry, replaced line-by-line programming with universally understood symbols to construct both standard and custom control algorithms. All of this combines to make the most intuitive, feature-rich, easy-to-use product on the market.