Home/Others
SE Line – R.S.E.A
Rugged Flexibility for Single Equipment Applications
Automated Logic’s powerful SE line provides a rugged solution for single equipment applications. Designed to operate in a wide range of environmental conditions, SE controllers can be used in rooftop units, mechanical rooms, equipment closets, or almost any other weather tight location. Fully programmable using the EIKON® graphic programming language, SE controllers use native BACnet communications over either a high-speed ARCNET 156 kbps network or a medium speed MS/TP network to provide maximum flexibility and interoperability.
Related Products
Key Features
Monitor:
up to 1000 feet (305 meters) of conductive fluid sensing cable and/or spot detectors per zone; 6000 feet (1830 meters) total, or
up to 700 feet (213 meters) of chemical sensing cable per zone; 4200 feet (1280 meters) total
The LDRA6 fully integrates with RLE’s family of leak detection cables. One controller can monitor an area for both water and chemical leaks with our distinct leak detection cables.
Create a unique combination of zone leak detection and dry contact alarm annunication
Adjustable leak thresholds fine-tune the system
Supervised inputs monitor cable for breaks and contamination
Form C relay output for each input enables communication with BMS/NMS/BAS via Modbus RTU (EIA-485)
One tri-color notification LED per input, and one audible alarm
Included Equipment: LDRA6 alarm panel
Additional Requirements: Isolated RLE power supply, leader cable, end-of-line (EOL) terminator, sensing cable (as needed for application)
Power: Requires an isolated power supply.
24VDC Isolated @ 600mA max.; requires RLE power supply PSWA-DC-24 (not included)
Inputs
Leak Detection Cable: Compatible with SeaHawk sensing cable and SD-Z and SD-Z1 spot detectors (not included)
Cable Input: Requires 15ft (4.6m) leader cable and EOL terminator for each zone (not included)
Maximum Length: 1000 feet (305m) of conductive fluid sensing cable and/or spot detectors per zone; 6000 feet (1830m) total, or 700 feet (213m) of chemical sensing cable per zone; 4200 feet (1280m) total
Detection Response Time Digital: When used with conductive fluid sensing cable or chemical sensing cable, 20-3600sec, software adjustable in 10 second increments; ±2sec Dry Contact NO/NC.
Outputs
Relay: 1 Form C Summary Alarm Relay, 6 Form C alarms, one per input/zone 1A @ 24VDC, 0.5A resistive @ 120VAC; Configurable for supervised or non-supervised, latched or non-latched
Communication Ports
EIA-232: 9600 baud; Parity none; 8 data bits, 1 stop bit
EIA-485: 1200, 2400, 9600 or 19,200 baud; Parity none, odd, even (programmable); 8 data bits, 1 stop bit
Protocols
Terminal Emulation (EIA-232): VT100 compatible
Modbus (EIA-485): Slave; RTU Mode; Supports function codes 03, 04, 06, and 16
Alarm Notification
Audible Alarm: 85DBA @ 2ft (0.6m); re-sound (disabled, 8,16 or 24 hours)
Visible Alarm: LED: Alarm: red; Cable Fault: yellow
Front Panel Interface
LED Indicators: Power: 1 green (on/off); 1 tri-color Status LED per zone (6 total) (Power On: green; Alarm: red; Cable Fault: yellow)
Push Buttons: Quiet/Test/Reset: 1
Operating Environment
Temperature: 32° to 122°F (0° to 50°C)
Humidity: 5% to 95% RH, non-condensing
Altitude: 15,000ft (4572m) max.
Storage Environment: -4° to 158°F (-20° to 70°C)
Dimensions: 10.5″W x 8.0″H x 2.0″D (267mmW x 203mmH x 51mmD)
Weight: 4 lbs. (1.82kg)
Mounting: Wall mount enclosure
Certifications: CE; ETL listed: conforms to UL 61010-1, EN 61010, CSA C22.2 No. 61010-1, IEC 61326:1997; RoHS compliant
Mechanical Installations
In many industries, mechanical systems serve as the backbone
of operations.
Thermal data collected with a thermal imaging camera can be
an invaluable source of complimentary information to vibration
studies in mechanical equipment monitoring.
Mechanical systems will heat up if there is a misalignment at
some point in the system.
Conveyor belts are a good example. If a roller is worn out, it will
clearly show in the thermal image so that it can be replaced.
Typically, when mechanical components become worn and less
efficient, the heat dissipated will increase. Consequently, the
temperature of faulty equipment or systems will increase rapidly
before failure.
By periodically comparing readings from a thermal imaging
camera with a machine’s temperature signature under normal
operating conditions, you can detect a multitude of different
failures.
Suspected roller Overheated bearing
This thermal image shows an electric engine under normal operation.
Motors can also be inspected with a thermal imaging camera.
Motor failures like brush contact-wear and armature shorts
typically produce excess heat prior to failure but remain
undetected with vibration analysis, since it often causes little
to no extra vibration. Thermal imaging gives a full overview and
allows you to compare the temperature of different motors.
Other mechanical systems monitored with thermal imaging
cameras include couplings, gearboxes, bearings, pumps,
compressors, belts, blowers and conveyor systems.
Examples of mechanical faults that can be detected with thermal
imaging are:
• Lubrication issues
• Misalignments
• Overheated motors
• Suspect rollers
• Overloaded pumps
• Overheated motor axles
• Hot bearings
These and other issues can be spotted at an early stage with
a thermal imaging camera. This will help to prevent costly
damages and to ensure the continuity of production.
Motor: Bearing Problem.
Motor: Internal Winding Problem.
References: Flir Systems
Introduction
Ever since the first commercial thermal imaging camera was
sold in 1965 for high voltage power line inspections, by what
would later become FLIR Systems, the use of thermal imaging
cameras for industrial applications has been an important market
segment for FLIR.
Since then thermal imaging technology has evolved. Thermal
imaging cameras have become compact systems that look just
like a digital video camera or digital photo camera. They are easy
to use and generate crisp real-time high-resolution images.
Thermal imaging technology has become one of the most
valuable diagnostic tools for industrial applications. By detecting
anomalies that are usually invisible to the naked eye, thermal
imaging allows corrective action to be taken before costly
system failures occur.
Powerful Microprocessor-Based Lighting Control Panel
Automated Logic’s Lighting Control LC08 panel brings the power and simplicity of WebCTRL® to your building’s lighting systems. The LC08 utilizes an advanced microprocessor to provide superior lighting control, while delivering the rapid response required by lighting applications
Optional VAV Accessories for use with ZN Line modules
The ZASF is part of a family of control modules designed specifically for VAV terminal box applications. It is designed to be used with the ZN341v+ and ZN141v+. It mounts directly on the secondary VAV damper shaft and provides an integral actuator and a second integrated flow sensor for damper positioning and air-flow sensing in dual duct or tracking systems.
Zone Controller
Automated Logic’s ZN253 provides unprecedented power and flexibility through fully programmable networked controllers. The ZN253 controllers connect to the Building Automation System (BAS) network using BACnet over ARCNET 156 kbps or MS/TP. The ZN253 supports a line of RS room sensors using its Rnet port.
Zone Controller
Automated Logic’s ZN220 provides unprecedented power and flexibility through fully programmable networked controllers. The ZN220 controllers connect to the Building Automation System (BAS) network using BACnet over ARCNET 156 kbps or MS/TP. The ZN220 supports a line of RS room sensors using its Rnet port.
Powerful Multi-Equipment Controllers
ME 812U Line – Powerful Multi-Equipment Controllers
The ME812U controllers have the speed, power, memory, and I/O flexibility to handle the most demanding control applications in the industry. Capable of controlling multiple pieces of equipment simultaneously, this robust BACnet controller can support complex control strategies with plenty of memory for trends, and is capable of third party integration using other communication protocols.
Universally Understood Graphical Programming
EIKON-LogicBuilder for WebCTRL is the most advanced graphical programming tool in the industry. With the click of a button, you can build complex control algorithms, diagnose problems, and run real-time or simulated operational data to evaluate the performance of a control sequence. EIKON-LogicBuilder makes it easy to understand control sequences as it does not use cryptic “line by line” computer code.
Key Features and Benefits
Intuitive graphical programming tool eliminates the need for complex programming or cryptic computer code.
Powerful library of microblocks (control functions) provide the flexibility to develop simple and complex control sequences.
Universally understood graphic symbols make control algorithms easy to understand.
Flexible simulation mode enables the user to view the control routines before system installation which simplifies development and troubleshooting.
Live Graphic Function Blocks (GFBs) are a valuable troubleshooting tool that allow system performance to be viewed in real time.
Complete integration with WebCTRL workstation software for seamless facility programming.
Instant project documentation captures development process.
An extensive library of sample GFBs provides pre-engineered solutions to many typical HVAC control applications. They can be used as-is, or easily modified in EIKON to meet special requirements.
Complete compatibility and functionality with BACnet®, ASHRAE’s industry standard protocol, for programming BACnet objects.