Home/Others
WebCTRL Powerful and Intuitive Front End For Building Control
Software
Automated Logic has long been known for its intuitive, powerful front-end building control software. In fact, ALC pioneered graphical programming in the industry. With our graphical user interface, users have such features as hierarchical scheduling, thermographic color floor plans, trending, alarm management, and reporting. And withWebCTRL®, our web-based building automation system, all of these features are available through a standard web browser – without any special software or plug-ins.
Time-Lapse Graphics™ is a revolutionary new feature within WebCTRL that allows operators to roll back time, up to a 24-hour slice, and play back hours of real-time data in just minutes. This innovative feature provides a quick, visual indication of any problem areas and gives facility managers a strong diagnostic tool to quickly identify and correct issues that impact energy efficiency and comfort.
Our Environmental Index™ provides a simple and effective solution. Starting with temperature as a key component of comfort, the Environmental Index (EI), expressed as a percentage, reflects how close the zone temperature is to the effective heating and cooling setpoints. Accessed through a browser using WebCTRL, the EI is shown on an easily read analog gauge, using the red segments to indicate poor environments, and graduating to green as conditions improve and the EI begins to approach 100%.
ALC’s EnergyReports™ is a flexible, easy-to-use reporting tool that enables facility managers to produce a wide variety of reports showing a building’s energy consumption. Using color graphs, EnergyReports allows users to compare energy consumption or demand over different periods with simple drop-down menus and calendar control options. This gives facility managers a powerful tool to minimize energy consumption, maximize comfort, and achieve sustainable building operations.
EIKON® – LogicBuilder, the most advanced graphical programming tool in the industry, replaced line-by-line programming with universally understood symbols to construct both standard and custom control algorithms. All of this combines to make the most intuitive, feature-rich, easy-to-use product on the market.
Related Products
welded construction with temperature resistant insulation
Shop and search results
Electrical systems
Thermal imaging cameras are commonly used for inspections of
electrical systems and components in all sizes and shapes.
The multitude of possible applications for thermal imaging cameras
within the range of electrical systems can be divided into two
categories: high voltage and low voltage installations.
High voltage installations
Heat is an important factor in high voltage installations. When electrical
current passes through a resistive element, it generates heat. An
increased resistance results in an increase in heat.
Over time the resistance of electrical connections will increase, due
to loosening and corrosion for instance. The corresponding rise in
temperature can cause components to fail, resulting in unplanned
outages and even injuries. In addition, the energy spent on generating
heat causes unnecessary energy losses. If left unchecked, the heat
can even rise to the point where connections melt and break down; as
a result, fires may break out.
Examples of failures in high-voltage installations that can be detected
with thermal imaging:
• Oxidation of high voltage switches
• Overheated connections •
Incorrectly secured connections
• Insulator defects
These and other issues can be spotted at an early stage with a thermal
imaging camera. A thermal imaging camera will help you to accurately
locate the problem, determine the severity of the problem, and
establish the time frame in which the equipment should be repaired.
A wide view of a substation can quickly show areas where unwanted high
resistance connections exist. No other predictive maintenance technology is
as effective for electrical inspections as thermal imaging.
One of the many advantages of thermal imaging is the ability to perform
inspections while electrical systems are under load. Since thermal imaging
is a non-contact diagnostic method, a thermographer can quickly scan a
particular piece of equipment from a safe distance, leave the hazardous
area, return to his office and analyze the data without ever putting himself
in harm’s way.
Thermal imaging cameras allow you to inspect high voltage installations
from a safe distance, increasing worker safety.
Continuity is very important to utilities since many people rely on their
services. Therefore thermal imaging inspections have become the core of
utility predictive maintenance programs throughout the world.
Thermal imaging cameras are used for inspections of electrical systems and
components in all sizes and shapes and their use is by no means limited to
large high voltage applications alone.
Electrical cabinets and motor control centers are regularly scanned with
a thermal imaging camera. If left unchecked, heat can rise to a point that
connections melt and break down; as a result, fires may break out.
Besides loose connections, electrical systems suffer from load imbalances,
corrosion, and increases in impedance to current. Thermal inspections can
quickly locate hot spots, determine the severity of the problem, and help
establish the time frame in which the equipment should be repaired.
Examples of failures in low voltage equipment that can be detected with
thermal imaging:
• High resistance connections
• Corroded connections
• Internal fuse damage
• Internal circuit breaker faults
• Poor connections and internal damage
These and other issues can be spotted at an early stage with a thermal
imaging camera. This will help to prevent costly damages and to avoid
dangerous situations.
Whether you intend to use thermal imaging cameras for
low voltage inspections in production plants, office facilities,
hospitals, hotels or domestic residences, FLIR Systems has
exactly the right thermal imaging camera for the job.
References: Flir Systems
Energy Metering for Tenant Billing
List Price: $0.00
Our Multi-Circuit Monitor power monitoring system provides a convenient solution for monitoring multiple electrical services which share a common voltage source. It also reports diagnostic information such as power factor, volts, amps, and kVAR, over an RS-485 network using the industry standard Modbus® communication protocol. To protect valuable equipment, it has built-in alarm registers for over- and under-voltage, current, and kVA.
The monitoring capabilities and open systems compatibility of the H8238 make it the ideal power monitoring solution for OEM, tenant submetering applications, and load management of power distribution units commonly used in internet data centers. The meter is a UL508 open type device without enclosure.
APPLICATIONS
Tenant submetering
Real-time power monitoring
Activity-based costing
Managing loads
Monitor power parameters from up to 8 services with one device
Save labor and installation costs by monitoring up to eight 3Ø, (or six 3Ø plus neutral current) loads from a single service with common voltage connections
Eliminates the need to install multiple transducers – fewer components to install…saves time and space
Easy connection to up to 24 industry standard five-amp CTs
Modbus communications for efficient data collection
Improve monitoring system efficiencies by accessing 26 data points per circuit, plus alarms, with one RS-485 drop
Daisy chain up to 30 units on a single drop…easy wiring
Field-selectable address, baud rate, parity and wiring connections…simple configuration
Digi-Touch
Digital Device Network for Lighting Control
Automated Logic’s Digi-Touch® Network dramatically reduces installation and wiring costs of field input devices, while increasing functionality of lighting switches. The Digi-Touch Network allows addressable Digi-Touch wall switches and Digi-Touch Input Modules to communicate with the LC series of Lighting Control Panels.
Powerful Microprocessor-Based Lighting Control Panel
Automated Logic’s Lighting Control LC08 panel brings the power and simplicity of WebCTRL® to your building’s lighting systems. The LC08 utilizes an advanced microprocessor to provide superior lighting control, while delivering the rapid response required by lighting applications
Optional VAV Accessories for use with ZN Line modules
The ZASF is part of a family of control modules designed specifically for VAV terminal box applications. It is designed to be used with the ZN341v+ and ZN141v+. It mounts directly on the secondary VAV damper shaft and provides an integral actuator and a second integrated flow sensor for damper positioning and air-flow sensing in dual duct or tracking systems.
Zone Controller
Automated Logic’s ZN253 provides unprecedented power and flexibility through fully programmable networked controllers. The ZN253 controllers connect to the Building Automation System (BAS) network using BACnet over ARCNET 156 kbps or MS/TP. The ZN253 supports a line of RS room sensors using its Rnet port.
Powerful Multi-Equipment Controllers
ME 812U Line – Powerful Multi-Equipment Controllers
The ME812U controllers have the speed, power, memory, and I/O flexibility to handle the most demanding control applications in the industry. Capable of controlling multiple pieces of equipment simultaneously, this robust BACnet controller can support complex control strategies with plenty of memory for trends, and is capable of third party integration using other communication protocols.
Universally Understood Graphical Programming
EIKON-LogicBuilder for WebCTRL is the most advanced graphical programming tool in the industry. With the click of a button, you can build complex control algorithms, diagnose problems, and run real-time or simulated operational data to evaluate the performance of a control sequence. EIKON-LogicBuilder makes it easy to understand control sequences as it does not use cryptic “line by line” computer code.
Key Features and Benefits
Intuitive graphical programming tool eliminates the need for complex programming or cryptic computer code.
Powerful library of microblocks (control functions) provide the flexibility to develop simple and complex control sequences.
Universally understood graphic symbols make control algorithms easy to understand.
Flexible simulation mode enables the user to view the control routines before system installation which simplifies development and troubleshooting.
Live Graphic Function Blocks (GFBs) are a valuable troubleshooting tool that allow system performance to be viewed in real time.
Complete integration with WebCTRL workstation software for seamless facility programming.
Instant project documentation captures development process.
An extensive library of sample GFBs provides pre-engineered solutions to many typical HVAC control applications. They can be used as-is, or easily modified in EIKON to meet special requirements.
Complete compatibility and functionality with BACnet®, ASHRAE’s industry standard protocol, for programming BACnet objects.
Characteristics
Introduction To Building Management Systems
A BMS is most common in a large building. Its core function is to manage the environment within the building and may control temperature, carbon dioxide levels and humidity within a building. As a core function in most BMS systems, it controls heating and cooling, manages the systems that distribute this air throughout the building (for example by operating fans or opening/closing dampers), and then locally controls the mixture of heating and cooling to achieve the desired room temperature. A secondary function sometimes is to monitor the level of human-generated CO2, mixing in outside air with waste air to increase the amount of oxygen while also minimising heat/cooling losses.
Systems linked to a BMS typically represent 40% of a building\\\’s energy usage; if lighting is included, this number approaches 70%. BMS systems are a critical component to managing energy demand. Improperly configured BMS systems are believed to account for 20% of building energy usage, or approximately 8% of total energy usage in the United States.[citation needed]
As well as controlling the building\\\’s internal environment, BMS systems are sometimes linked to access control (turnstiles and access doors controlling who is allowed access and egress to the building) or other security systems such as closed-circuit television (CCTV) and motion detectors. Fire alarm systems and elevators are also sometimes linked to a BMS, for example, if a fire is detected then the system could shut off dampers in the ventilation system to stop smoke spreading and send all the elevators to the ground floor and park them to prevent people from using them in the event of a fire.
Functions of Building Management Systems
The three basic functions of a central, computer-controlled BMS are:
• controlling
• monitoring
• optimizing
the building’s facilities, mechanical, and electrical equipment for comfort, safety, and efficiency.
A BMS normally comprises of:
• Power systems
• Illumination system
• Electric power control system
• Heating,Ventilation and Air-conditioning HVAC System
• Security and observation system
• Magnetic card and access system
• Fire alarm system
• Lifts, elevators etc.
• Plumbing system
• Burglar alarms, CCTV
• Trace Heating
• Other engineering systems
• Home Automation System
• Fire alarm and Safety system
Benefits of BMS
Building tenant/occupants
• Good control of internal comfort conditions
• Possibility of individual room control
• Increased staff productivity
• Effective monitoring and targeting of energy consumption
• Improved plant reliability and life
• Effective response to HVAC-related complaints
• Save time and money during the maintenance
Building owner
• Higher rental value
• Flexibility on change of building use
• Individual tenant billing for services facilities manager
• Central or remote control and monitoring of building
• Increased level of comfort and time saving
• Remote Monitoring of the plants (such as AHU\\\’s, Fire pumps, plumbing pumps, Electrical supply, STP, WTP etc.)
Maintenance Companies
• Ease of information availability problem
• Computerized maintenance scheduling
• Effective use of maintenance staff
• Early detection of problems
• More satisfied occupants
References
Wikipedia