Home/Others
ZASF – Optional VAV Accessories for use with ZN Line Modules
ZASF
Optional VAV Accessories for use with ZN Line modules
The ZASF is part of a family of control modules designed specifically for VAV terminal box applications. It is designed to be used with the ZN341v+ and ZN141v+. It mounts directly on the secondary VAV damper shaft and provides an integral actuator and a second integrated flow sensor for damper positioning and air-flow sensing in dual duct or tracking systems.
Related Products
Introduction
Ever since the first commercial thermal imaging camera was
sold in 1965 for high voltage power line inspections, by what
would later become FLIR Systems, the use of thermal imaging
cameras for industrial applications has been an important market
segment for FLIR.
Since then thermal imaging technology has evolved. Thermal
imaging cameras have become compact systems that look just
like a digital video camera or digital photo camera. They are easy
to use and generate crisp real-time high-resolution images.
Thermal imaging technology has become one of the most
valuable diagnostic tools for industrial applications. By detecting
anomalies that are usually invisible to the naked eye, thermal
imaging allows corrective action to be taken before costly
system failures occur.
The AMR (auto meter reading) is an I/O module that has been specifically designed for the special needs of auto meter reading applications. The AMR can be interfaced directly with the output of various types of pulse output meters (electricity, water, gas, BTU) and the data collected from the various meters sent to a central host via its RS485 interface. Some special features which distinguish it from regular I/O modules are:
– noise filtering from the pulse input to prevent miscounts
– EEPROM memory to retain count data in case of power interruption
– accommodates up to 16 channels of pulse input
– dry contact channel input that eliminates the need for additional power supply
– synchronize retain count with actual meter display
– rechargeable battery backup option to maintain at least 8 hours of continuous operation during a power outage
and many more!
Powerful Microprocessor-Based Lighting Control Panel
Automated Logic’s Lighting Control LC08 panel brings the power and simplicity of WebCTRL® to your building’s lighting systems. The LC08 utilizes an advanced microprocessor to provide superior lighting control, while delivering the rapid response required by lighting applications
Zone Controller
Automated Logic’s ZN551 provides unprecedented power and flexibility through fully programmable networked controllers. The ZN551 controllers connect to the Building Automation System (BAS) network using BACnet over ARCNET 156 kbps or MS/TP. The ZN551 supports a line of RS room sensors using Rnet port
Rugged Flexibility for Single Equipment Applications
Automated Logic’s powerful SE line provides a rugged solution for single equipment applications. Designed to operate in a wide range of environmental conditions, SE controllers can be used in rooftop units, mechanical rooms, equipment closets, or almost any other weather tight location. Fully programmable using the EIKON® graphic programming language, SE controllers use native BACnet communications over either a high-speed ARCNET 156 kbps network or a medium speed MS/TP network to provide maximum flexibility and interoperability.
High Speed Ethernet Router
The LGR is an extremely powerful, high-speed device router that can connect hundreds of control modules to a BACnet/IP backbone. Support for BACnet/IP, BACnet over Ethernet, ARCNET 156kbps, MS/TP, and BACnet PTP communications are standard. Optional protocol translator packages and a wide range of communication ports allow the LGR to also serve as a gateway to a wide range of open and proprietary networks. Fully programmable, the LGR can also execute complex control strategies for high level system integration.
A Tool for Sustainable Building Operations
Automated Logic’s EnergyReports™ application is an incredibly flexible, easy-to-use reporting tool that gives facility managers the power to produce a wide variety of reports showing a building’s energy consumption. Using dynamic and animated color graphs, EnergyReports allows users to compare energy consumption or demand over different periods with simple drop-down menus and calendar control options. A click of the mouse enables users to normalize consumption data, convert the data to cost or carbon dioxide emissions, and change engineering units on the fly. This gives facility managers a powerful tool to minimize energy consumption, maximize comfort, and achieve sustainable building operations
Software
WebCTRL Powerful and Intuitive Front End For Building Control
Automated Logic has long been known for its intuitive, powerful front-end building control software. In fact, ALC pioneered graphical programming in the industry. With our graphical user interface, users have such features as hierarchical scheduling, thermographic color floor plans, trending, alarm management, and reporting. And with WebCTRL®, our web-based building automation system, all of these features are available through a standard web browser – without any special software or plug-ins.
Characteristics
Introduction To Building Management Systems
A BMS is most common in a large building. Its core function is to manage the environment within the building and may control temperature, carbon dioxide levels and humidity within a building. As a core function in most BMS systems, it controls heating and cooling, manages the systems that distribute this air throughout the building (for example by operating fans or opening/closing dampers), and then locally controls the mixture of heating and cooling to achieve the desired room temperature. A secondary function sometimes is to monitor the level of human-generated CO2, mixing in outside air with waste air to increase the amount of oxygen while also minimising heat/cooling losses.
Systems linked to a BMS typically represent 40% of a building\\\’s energy usage; if lighting is included, this number approaches 70%. BMS systems are a critical component to managing energy demand. Improperly configured BMS systems are believed to account for 20% of building energy usage, or approximately 8% of total energy usage in the United States.[citation needed]
As well as controlling the building\\\’s internal environment, BMS systems are sometimes linked to access control (turnstiles and access doors controlling who is allowed access and egress to the building) or other security systems such as closed-circuit television (CCTV) and motion detectors. Fire alarm systems and elevators are also sometimes linked to a BMS, for example, if a fire is detected then the system could shut off dampers in the ventilation system to stop smoke spreading and send all the elevators to the ground floor and park them to prevent people from using them in the event of a fire.
Functions of Building Management Systems
The three basic functions of a central, computer-controlled BMS are:
• controlling
• monitoring
• optimizing
the building’s facilities, mechanical, and electrical equipment for comfort, safety, and efficiency.
A BMS normally comprises of:
• Power systems
• Illumination system
• Electric power control system
• Heating,Ventilation and Air-conditioning HVAC System
• Security and observation system
• Magnetic card and access system
• Fire alarm system
• Lifts, elevators etc.
• Plumbing system
• Burglar alarms, CCTV
• Trace Heating
• Other engineering systems
• Home Automation System
• Fire alarm and Safety system
Benefits of BMS
Building tenant/occupants
• Good control of internal comfort conditions
• Possibility of individual room control
• Increased staff productivity
• Effective monitoring and targeting of energy consumption
• Improved plant reliability and life
• Effective response to HVAC-related complaints
• Save time and money during the maintenance
Building owner
• Higher rental value
• Flexibility on change of building use
• Individual tenant billing for services facilities manager
• Central or remote control and monitoring of building
• Increased level of comfort and time saving
• Remote Monitoring of the plants (such as AHU\\\’s, Fire pumps, plumbing pumps, Electrical supply, STP, WTP etc.)
Maintenance Companies
• Ease of information availability problem
• Computerized maintenance scheduling
• Effective use of maintenance staff
• Early detection of problems
• More satisfied occupants
References
Wikipedia